R语言高级提升篇:数据挖掘算法之机器学习篇

R语言高级提升篇:数据挖掘算法之机器学习篇

KNN近邻算法、朴素贝叶斯算法、决策树算法已经组合算法的基本原理及R语言实现。

159 360 人学习

课程名称:

R语言高级提升篇:数据挖掘算法之机器学习篇

本课程为《R语言十三式》收费课程的体系课程,大家可以前往学习和了解:

https://edu.hellobi.com/classroom/1/courses

详情请前往:

https://major.hellobi.com/datamining


讲师介绍:

谢佳标  多届中国R语言大会演讲嘉宾,目前在创梦天地担任高级数据分析师一职,作为创梦天地数据挖掘组的负责人,带领团队对游戏数据进行深度挖掘,主要利用R语言进行大数据的挖掘和可视化工作。本人从事数据挖掘建模工作已有9年,曾经从事过咨询、电商、电购、电力、游戏等行业,了解不同领域的数据特点。有丰富的利用R语言进行数据挖掘实战经验。攥写了《R语言与数据挖掘》及《R语言游戏数据分析》等书籍。


课程目的:

通过本课程学习,掌握常用机器学习算法:KNN近邻算法、朴素贝叶斯算法、决策树算法已经组合算法的基本原理及R语言实现。


课程大纲:

章节1: KNN近邻算法

1:KNN近邻算法基本原理及K值的选择方法 

2:KNN算法距离准备及KNNR语言实现 

3:案例一:用KNN算法对鸢尾花分类进行识别 

4:案例二:用KNN算法诊断乳腺癌 

5:案例三:用KNN算法对汽车类型进行识别

章节2: 朴素贝叶斯分类

6:朴素贝叶斯分类 

7:朴素贝叶斯分类 

8:案例一:基于朴素贝叶斯算法识别糖尿病患者 

9:基于朴素贝叶斯算法识别手机垃圾短信 

章节3: 决策树分类

10:决策树算法基本原理 

11:ID3算法举例

12:决策树案例演示

章节4: 组合算法

13:组合方法基本原理及adaboost算法R语言实现

14:bagging分类R语言实现 

15:随机森林及R语言实现


备注:

课程配套资料请到课程公告下载。

加入学习后请添加客服微信:tianshansoft06(请注明:课程名称),加入学员交流群。

天善六号.jpg


改版

反馈