课程名称:
R语言高级提升篇:数据挖掘算法之机器学习篇
【温馨提示:1. 你可以在PC端浏览器或者微信收藏该页面,以方便你快速找到这个课程;2. 课程相关资料&QQ会员群可在课程PC端公告查看下载;3.购买课程后,点(课时)列表即可观看视频;4. 本课程虚拟商品,已经购买,不能退款。建议先试听章节的,有疑问可咨询客服天善九号:tianshansvip 】
本课程为《R语言十三式》收费课程的体系课程,大家可以前往学习和了解:
https://edu.hellobi.com/classroom/1/courses
详情请前往:
https://major.hellobi.com/datamining
讲师介绍:
谢佳标 多届中国R语言大会演讲嘉宾,目前在创梦天地担任高级数据分析师一职,作为创梦天地数据挖掘组的负责人,带领团队对游戏数据进行深度挖掘,主要利用R语言进行大数据的挖掘和可视化工作。本人从事数据挖掘建模工作已有9年,曾经从事过咨询、电商、电购、电力、游戏等行业,了解不同领域的数据特点。有丰富的利用R语言进行数据挖掘实战经验。攥写了《R语言与数据挖掘》及《R语言游戏数据分析》等书籍。
课程目的:
通过本课程学习,掌握常用机器学习算法:KNN近邻算法、朴素贝叶斯算法、决策树算法已经组合算法的基本原理及R语言实现。
课程大纲:
章节1: KNN近邻算法
1:KNN近邻算法基本原理及K值的选择方法
2:KNN算法距离准备及KNNR语言实现
3:案例一:用KNN算法对鸢尾花分类进行识别
4:案例二:用KNN算法诊断乳腺癌
5:案例三:用KNN算法对汽车类型进行识别
章节2: 朴素贝叶斯分类
6:朴素贝叶斯分类
7:朴素贝叶斯分类
8:案例一:基于朴素贝叶斯算法识别糖尿病患者
9:基于朴素贝叶斯算法识别手机垃圾短信
章节3: 决策树分类
10:决策树算法基本原理
11:ID3算法举例
12:决策树案例演示
章节4: 组合算法
13:组合方法基本原理及adaboost算法R语言实现
14:bagging分类R语言实现
15:随机森林及R语言实现
学习方式:
录播课程,开课即学
在线反复观看,有效期2年
上课方式:录播学习+VIP会员群+独享问答中心+在线答疑 +2年反复观看
友情提示:
1、PC端如果发现浏览器无法观看课程,建议使用谷歌浏览器观看;移动端建议直接微信打开课程页面
2、如果购买后下次登录提示课程需要重新购买,一般是因为你把登录账户记成你绑定的手机或者邮箱帐号而混淆了。
3、【在微信购买课程的用户注意】请微信收藏课程页面或者关注微信公众号:天善智能(点“我的”即可查看你已购买的课程),已方便下次学习。
4、课程相关资料&QQ会员群可在课程PC端公告查看下载;
5、加入学习后请添加客服微信:tianshansvip(请注明:公司+职位+姓名),邀请你加入微信课程群